skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flórez, Andrés"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The production of heavy neutral mass resonances, $$\text {Z}^{\prime }$$ Z ′ , has been widely studied theoretically and experimentally. Although the nature, mass, couplings, and associated quantum numbers of this hypothetical particle are yet to be determined, current LHC experimental results have set strong constraints assuming the simplest beyond Standard Model (SM) hypotheses. We present a new feasibility study on the production of a $$\text {Z}^{\prime }$$ Z ′ boson at the LHC, with family non-universal couplings, considering proton–proton collisions at $$\sqrt{s} = 13$$ s = 13 and 14 TeV. Such a hypothesis is well motivated theoretically and it can explain observed differences between SM predictions and experimental results, as well as being a useful tool to further probe recent results in searches for new physics considering non-universal fermion couplings. We work under two simplified phenomenological frameworks where the $$\textrm{Z}^{\prime }$$ Z ′ masses and couplings to the SM particles are free parameters, and consider final states of the $$\text {Z}^{\prime }$$ Z ′ decaying to a pair of $$\textrm{b}$$ b quarks. The analysis is performed using machine learning techniques to maximize the sensitivity. Despite being a well motivated physics case in its own merit, such scenarios have not been fully considered in ongoing searches at the LHC. We note the proposed search methodology can be a key mode for discovery over a large mass range, including low masses, traditionally considered difficult due to experimental constrains. In addition, the proposed search is complementary to existing strategies. 
    more » « less
  2. A bstract The identity of Dark Matter (DM) is one of the most active topics in particle physics today. Supersymmetry (SUSY) is an extension of the standard model (SM) that could describe the particle nature of DM in the form of the lightest neutralino in R-parity conserving models. We focus on SUSY models that solve the hierarchy problem with small fine tuning, and where the lightest SUSY particles $$ \left({\tilde{\upchi}}_1^0,{\tilde{\upchi}}_1^{\pm },{\tilde{\upchi}}_2^0\right) $$ χ ˜ 1 0 χ ˜ 1 ± χ ˜ 2 0 are a triplet of higgsino-like states, such that the mass difference $$ \Delta m\left({\tilde{\upchi}}_2^0,{\tilde{\upchi}}_1^0\right) $$ Δ m χ ˜ 2 0 χ ˜ 1 0 is 0.5–50 GeV. We perform a feasibility study to assess the long-term discovery potential for these compressed SUSY models with higgsino-like states, using vector boson fusion (VBF) processes in the context of proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV, at the CERN Large Hadron Collider. Assuming an integrated luminosity of 3000 fb − 1 , we find that stringent VBF requirements, combined with large missing momentum and one or two low- p T leptons, is effective at reducing the major SM backgrounds, leading to a 5 σ (3 σ ) discovery reach for $$ m\left({\tilde{\upchi}}_2^0\right) $$ m χ ˜ 2 0 < 180 (260) GeV, and a projected 95% confidence level exclusion region that covers $$ m\left({\tilde{\upchi}}_2^0\right) $$ m χ ˜ 2 0 up to 385 GeV, parameter space that is currently unconstrained by other experiments. 
    more » « less
  3. null (Ed.)